Clifford algebra unveils a surprising geomet- ric significance of quaternionic root systems of Coxeter groups
نویسنده
چکیده
Quaternionic representations of Coxeter (reflection) groups of ranks 3 and 4, as well as those of E8, have been used extensively in the literature. The present paper analyses such Coxeter groups in the Clifford Geometric Algebra framework, which affords a simple way of performing reflections and rotations whilst exposing more clearly the underlying geometry. The Clifford approach shows that the quaternionic representations in fact have very simple geometric interpretations. The representations of the groups A1×A1×A1, A3, B3 and H3 of rank 3 in terms of pure quaternions are shown to be simply the Hodge dualised root vectors, which determine the reflection planes of the Coxeter groups. Two successive reflections result in a rotation, described by the geometric product of the two reflection vectors, giving a Clifford spinor. The spinors for the rank-3 groups A1 ×A1 ×A1, A3, B3 and H3 yield a new simple construction of binary polyhedral groups. These in turn generate the groups A1 ×A1 ×A1 ×A1, D4, F4 and H4 of rank 4, and their widely used quaternionic representations are shown to be spinors in disguise. Therefore, the Clifford geometric product in fact induces the rank-4 groups from the rank-3 groups. In particular, the groups D4, F4 and H4 are exceptional structures, which our study sheds new light on. IPPP/12/26, DCPT/12/52 Mathematics Subject Classification (2010). Primary 51F15, 20F55; Secondary 15A66, 52B15.
منابع مشابه
Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction
In this paper, we show that via a novel construction every rank-3 root system induces a root system of rank 4. Via the Cartan-Dieudonné theorem, an even number of successive Coxeter reflections yields rotations that in a Clifford algebra framework are described by spinors. In three dimensions these spinors themselves have a natural four-dimensional Euclidean structure, and discrete spinor group...
متن کاملin Algebra . Coxeter groups and Hecke algebras
The finite Coxeter groups are the finite groups generated by reflections on real Euclidean spaces. Examples include dihedral groups, the symmetry groups of regular polytopes (e.g. regular polygons and platonic solids) and the Weyl groups of semisimple complex Lie groups and Lie algebras (such as the special linear group and Lie algebra). General Coxeter groups may be defined as certain (special...
متن کاملRational Bézier Formulas with Quaternion and Clifford Algebra Weights
We consider Bézier-like formulas with weights in quaternion and geometric (Clifford) algebra for parametrizing rational curves and surfaces. The simplest non-trivial quaternionic case of bilinear formulas for surface patches is studied in detail. Such formulas reproduce well known biquadratic parametrizations of principal Dupin cyclide patches, and are characterized in general as special Darbou...
متن کامل. Q A ] 2 7 O ct 2 00 6 A GENERALIZATION OF COXETER GROUPS , ROOT SYSTEMS , AND MATSUMOTO ’ S THEOREM
The root systems appearing in the theory of Lie superalgebras and Nichols algebras admit a large symmetry extending properly the one coming from the Weyl group. Based on this observation we set up a general framework in which the symmetry object is a groupoid. We prove that in our context the groupoid is generated by reflections and Coxeter relations. This answers a question of Serganova. Our w...
متن کاملRoot systems and generalized associahedra
Contents Root systems and generalized associahedra 1 Root systems and generalized associahedra 3 Lecture 1. Reflections and roots 5 1.1. The pentagon recurrence 5 1.2. Reflection groups 6 1.3. Symmetries of regular polytopes 8 1.4. Root systems 11 1.5. Root systems of types A, B, C, and D 13 Lecture 2. Dynkin diagrams and Coxeter groups 15 2.1. Finite type classification 15 2.2. Coxeter groups ...
متن کامل